Search results for "Single point"

showing 10 items of 37 documents

Optical study for springback prediction, thickness reduction and forces variations on single point incremental forming

2019

Abstract The goal of the present work is to present an experimental study regarding the influence of the main technological influence factors such as the vertical step and the punch diameter on the single point incremental forming process (SPIF). In this paper we estimate the influence of these two factors on springback, thickness reduction and forces. Both parameters were varied on two levels: (d) punch diameter 6 and 10 mm and (s) vertical step 0,1 and 0,5 mm. The experiments were done on experimental layout composed by a robot, a clamping system that contains the die’s lower part and the optical system.

010302 applied physicsWork (thermodynamics)Materials sciencebusiness.product_categorybusiness.industryForming processes02 engineering and technologyStructural engineering021001 nanoscience & nanotechnology01 natural sciencesClampingReduction (complexity)0103 physical sciencesRobotDie (manufacturing)Single point0210 nano-technologybusinessMaterials Today: Proceedings
researchProduct

Geometrical deviation of end-of-life parts as a consequence of reshaping by single point incremental forming

2021

AbstractPutting in place circular economy strategies is an urgent challenge to face. In this scenario, manufacturing processes play a relevant role as efficient material reuse enabler. Scientists have to make an effort either to find new process or to rethink old process to reprocess end-of-life (EoL) component to recover both material and functions. In this paper, single point incremental forming (SPIF) process is used for reshaping sheet metal EoL components. The entire process chain was replicated including both deep drawing process (to imitate the end-of-life component) as well as SPIF operations (to obtain the reshaped components). The geometrical deviation as a consequence of SPIF ope…

0209 industrial biotechnologyCircular economyComputer scienceGeometrical deviationMechanical engineering02 engineering and technology010501 environmental sciencesReuse01 natural sciencesIndustrial and Manufacturing Engineering020901 industrial engineering & automationComponent (UML)Deep drawing0105 earth and related environmental sciencesMechanical EngineeringCircular economyProcess (computing)ReshapingComputer Science ApplicationsControl and Systems EngineeringFace (geometry)visual_artvisual_art.visual_art_mediumSingle pointSPIFSheet metalSoftware
researchProduct

Using the Analytic Hierarchy Process (AHP) and fuzzy logic to evaluate the possibility of introducing single point incremental forming on industrial …

2018

Abstract Single point incremental forming (SPIF) is a promising forming process, yet not entirely accepted and implemented on industrial scale, due to several reasons, presented in the paper. The approach presented here develops an evaluation method for the degree of its industrial implementation. Several factors which will favor the industrial implementation of ASPIF are identified and their weights are hierarchized by means of AHP. To assess the robustness of the AHP, a sensitivity analysis was also presented. Furthermore, a fuzzy inference system was built, having as output the degree of industrial implementation of SPIF.

0209 industrial biotechnologyComputer scienceIndustrial scaleForming processesAnalytic hierarchy process02 engineering and technologyFuzzy logicIndustrial engineering020901 industrial engineering & automationRobustness (computer science)0202 electrical engineering electronic engineering information engineeringGeneral Earth and Planetary Sciences020201 artificial intelligence & image processingSensitivity (control systems)Single pointGeneral Environmental ScienceProcedia Computer Science
researchProduct

Simulated 3-axis versus 5-axis Processing Toolpaths for Single Point Incremental Forming

2019

Abstract Accuracy and productivity of the parts manufactured by single point incremental forming (SPIF) are influenced by the proper selection of toolpaths. CAM software packages are often used for generating the toolpaths for the process. Literature survey have revealed that contour curves and spatial spirals are the most used toolpaths for SPIF. These toolpaths are generated using 3-axis approaches, meaning that the tool axis is maintained parallel to the vertical axis. The 3-axis approach was justified using 3-axis CNC milling machines as the main technological equipment for SPIF. However, nowadays, the wide spreading of both 5-axis CNC milling machines and industrial robots, with far su…

0209 industrial biotechnologyComputer scienceProcess (computing)Mechanical engineeringVertical axis02 engineering and technologyKinematics020303 mechanical engineering & transports020901 industrial engineering & automation0203 mechanical engineeringMachiningComputer-aided manufacturingRobotSingle pointLiterature surveyIOP Conference Series: Materials Science and Engineering
researchProduct

A Brief Review of Manufacturing Medical Implants by Single Point Incremental Forming

2018

Abstract SPIF is a relatively new process that can replace conventional deformation processes. Due to the use of generic tools only, the process is suited to achieving unique production or prototypes. The paper presents a brief literature review on current research of single point incremental forming with applications in obtaining medical implants regarding materials and metodology used.

0209 industrial biotechnologyEngineering020901 industrial engineering & automationbusiness.industryMechanical engineeringCranial prosthesis02 engineering and technologyGeneral MedicineSingle point021001 nanoscience & nanotechnology0210 nano-technologybusinessAutomationACTA Universitatis Cibiniensis
researchProduct

Single point incremental forming: An assessment of the progress and technology trends from 2005 to 2015

2017

The last decade has seen considerable interest in flexible forming processes. Among the upcoming flexible forming techniques, one that has captured a lot of interest is single point incremental forming (SPIF), where a flat sheet is incrementally deformed into a desired shape by the action of a tool that follows a defined toolpath conforming to the final part geometry. Research on SPIF in the last ten years has focused on defining the limits of this process, understanding the deformation mechanics and material behaviour and extending the process limits using various strategies. This paper captures the developments that have taken place over the last decade in academia and industry to highlig…

0209 industrial biotechnologyEngineeringProcess (engineering)Seven Management and Planning Toolsbusiness.industryStrategy and ManagementForming processes02 engineering and technologyManagement Science and Operations ResearchTechnology assessment021001 nanoscience & nanotechnologyIndustrial and Manufacturing EngineeringManufacturing engineeringField (computer science)020901 industrial engineering & automationIncremental forming Geometric accuracy Formability Process limits Technology assessment ApplicationsFormabilityState (computer science)Single point0210 nano-technologybusiness
researchProduct

Numerical Study about the Influence of Wall Angle about Main Strains, Thickness Reduction and Forces on Single Point Incremental Forming Process

2016

Abstract The current paper aims to study, using numerical simulation, the influence of the wall angle on the single point incremental forming process. For the analysis there has been used the LS-Dyna software and three explicit dynamic analyses were run for three parts with wall angles of 450, 550 and 650. The factors taken into account are the main strains, the thickness reduction and the forces on three directions. The material data introduced into the simulation were determined based on an uniaxial traction test on an Instron 5587 testing machine and the Aramis system was used as optical extensometer.

0209 industrial biotechnologyMaterials scienceComputer simulationbusiness.industryForming processes020207 software engineering02 engineering and technologyGeneral MedicineStructural engineeringAutomationReduction (complexity)020901 industrial engineering & automationExplicit analysis0202 electrical engineering electronic engineering information engineeringSingle pointbusinessACTA Universitatis Cibiniensis
researchProduct

Magnetic field-assisted single-point incremental forming with a magnet ball tool

2021

Abstract This paper describes magnetic field-assisted single-point incremental forming (M-SPIF) with a Nd-Fe-B magnet ball tool. In M-SPIF, the tool driven by magnetic force plastically deforms a sheet. The polarity of the magnet tool helps to make the magnetic force (i.e., forming force) more controllable. In creating a truncated cone, the direction of the magnetic force gradually points more outward as the process progresses, and material is forced outwards from the cone center, increasing thinning in M-SPIF, while the cone center remains undeformed in traditional SPIF. Moreover, M-SPIF creates less localized plastic strain than traditional SPIF while forming the desired geometry.

0209 industrial biotechnologyMaterials scienceMechanical EngineeringProcess (computing)Mechanical engineering02 engineering and technologyPlasticityIndustrial and Manufacturing EngineeringMagnetic field020303 mechanical engineering & transports020901 industrial engineering & automation0203 mechanical engineeringCone (topology)Incremental sheet forming Magnetic field Sheet metalMagnetBall (bearing)Single pointSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazionePolarity (mutual inductance)
researchProduct

A Methodology to Study Pseudogenized lincRNAs

2021

Long intergenic noncoding RNAs (lincRNAs) are known to be tissue specifically expressed and able to regulate functional protein-coding genes: some can even act as competing endogenous RNAs (ceRNAs), because microRNAs can bind to them instead of the corresponding mRNA binding sites. Some lincRNAs contain remnants of protein-coding sequences and it has been hypothesized that they might arise after a pseudogenization processes. However, a major limitation in the study of such phenomenon is the lack of proper computational tools designed to align/analyze protein-coding sequences and noncoding sequences. To overcome this limitation, we published a method that finds the remnants of protein-coding…

0301 basic medicineCompeting endogenous RNAPseudogeneSequence alignmentComputational biologyBiology03 medical and health sciences030104 developmental biology0302 clinical medicineIntergenic regionmicroRNASingle pointGene030217 neurology & neurosurgerySequence (medicine)
researchProduct

Comparative Study About Different Experimental Layouts Used on Single Point Incremental Forming Process

2018

Abstract The present paper proposes a comparative study between two of the most used experimental layouts on the single point incremental forming with the advantages and disadvantages of these experimental layouts. After a short presentation of the newest technological opportunities on single point incremental forming, the paper presents a classification of the experimental layouts used on this kind of forming process. The comparative study highlights the advantages and the disadvantages of using the universal milling machines and the industrial robots on single point incremental forming. There are presented the results focused on thinning and forces in the SPIF process.

Computer scienceForming processesGeneral MedicineSingle pointAlgorithmACTA Universitatis Cibiniensis
researchProduct